Exam. Code : 105702
 Subject Code: 1532

B.Sc. (Information Technology) Semester-II Paper-V : NUMERICAL METHODS AND STATISTICAL TECHNIQUES

Time Allowed-3 Hours]

[Maximum Marks-75

Note : Attempt any FIVE questions. All questions carry equal marks. The use of non-programmable and non-storage type calculator is allowed.

1. (a) What are Numerical Methods? Differentiate between numerical methods and numerical analysis.
(b) Define and compare absolute and relative errors.
2. Describe Newton-Raphson method to solve a transcendental equation. How is this method better than Bi-section method?
3. Solve the following set of simultaneous algebraic equations using the Gauss elimination method :

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+2 x_{3}=15 \\
& 2 x_{1}+x_{2}+2 x_{3}=-5 \\
& 4 x_{1}+x_{2}-2 x_{3}=0
\end{aligned}
$$

3056(2416)/QFV-49425
4. Write the procedure for Simpson's $3 / 8$ rule. Integrate the function $5 x^{3}-3 x^{2}+2 x+1$ from $x=-1$ to $x=1$ using Simpson's rule with $\mathrm{h}=1$.
5. Fit a straight line to the following data regarding x as the independent variable :

x	0	1	2	3	4
y	1.0	1.8	3.3	4.5	6.3

Hence find the difference between the actual value of y and the value of y obtained from the fitted curve when $x=3$.
6. (a) What is the relationship between mean, median and mode? Justify with an example.
(b) The following data relates to the performance of students in two Sections A and B in a preparatory examination :

Section	Mean Marks	Standard Deviation
A	43	5
B	41	1.5

The minimum pass marks in the examination are 36 . Which Section needs greater attention for preparing for annual examination, if marks are assumed to be normally distributed?
7. Define Dispersion. What are the various measures of dispersion? Explain each in detail with examples and differentiate between them.
8. Write short notes on the following :
(a) Difficulties of multiple roots
(b) Divided Difference method
(c) Polynomial fit.

